
OA 3302
Winter 2000

Computer Lab 08
In this lab you will write a class implementing the composition method for triangular densities. An

instance of the class you write can be retrieved from the RandomFactory class you have been using in
your other labs for built-in random variates (such as Exponential).

Concepts

• Composition method
• Implementing an instance of RandomVariate
• Histograms in Simkit

Description

This lab consists of the following parts: (1) Write the TriangularVariate class; (2) Test the
TriangularVariate class; and (3) Write the code to create histograms

1. Write TriangularVariate Class

The TriangularVariate class will use the composition method to generate a triang(a, b, c)
random variate. Recall that the algorithm is

Generate U, V ~ Un(0, 1)
if (V < (c - a) / (b - a))

Return a + (c - a)
else

Return b - (b - c)

This algorithm should be implemented in the generate() method. For a class to be “found” by the Ran-
domFactory, it must implement the simkit.data.RandomVariate interface. The RandomVari-
ate interface has the following methods:

void setSeed(long);
void resetSeed();
void setParameters(Object[]);
Object[] getParameters();
double generate();

Constructor

The constructor should have signature (Object[], long). This is the most general type of
constructor that can be found by RandomFactory and should suit most purposes. Declare an instance
variable of type RandomNumber called rng that will be used for your uniform (0,1) variates.

You will need three instance variables to hold the left, right, and center values; call these left,
right, and center, respectively.1 The setter need to be handled a bit differently than usual; because
RandomFactory passes the parameter values via setParameters(Object[]), which you must
write. For subclassing purposes, you should declare these four instance variables to be protected rather
than private.

1. Yes, very imaginative!

U

1 U–

2

setSeed(long), resetSeed() Methods

These methods should simply pass the argument to setSeed(long) of the RandomNumber
instance variable.

setParameters(Object[])

This method needs to unwrap the three values in the Object[] argument and store them in the
three instance variables (left, right, center). To be safe, you should only do this if (1) The argument
is not null; (2) It has length equal 3; and (3) All of its elements are instances of Number.2 Check each
Object’s type with “instanceof Number”.3 Throw an IllegalArgumentException from
setParameters() if all these conditions are not met.

getParameters()

You should also write public Object[] getParameters() to return an Object[] con-
sisting of the three values wrapped in Double objects.

generate()

The generate() method is the main purpose for writing the class in the first place. Implement the
algorithm

Other Constructors

After you have tested your class, it ise useful to write at least one other constructor that has signa-
ture (Object[], RandomNumber). This should set the parameters, as with the first constructor, but
also set the RandomNumber instance variable to the second argument. Another useful constructor simply
has signature (Object[]) that gets its RandomNumber from RandomFactory with the default seed (i.e.
with RandomFactory.getRandomNumber()).

Test the TriangularVariate Class

After you get the TriangularVariate class to compile, write TestGenerate as a pure execu-
tion class to test it out. Use RandomFactory to retrieve an instance with parameters (1.0, 2.5, 1.5) as fol-
lows:

Object[] parameters = new Object[] {new Double(1.0), new Double(2.5), new Double(1.5)};
long seed = RandomStream.STREAM[4];
RandomVariate triangle =
 RandomFactory.getRandomVariate("oa3302.TriangularVariate", parameters, seed);

Note that unlike previous usage, you must give the fully qualified name of your RandomVari-
ate class to RandomFactory. The first five generated variates should be:

2.186939575801437
2.3945392174305744
1.6134242547059288
1.4371963823097882
1.4645334820214746

2. Number is the superclass of Integer, Double, Float, etc.
3. For example, (param[0] instanceof Number) evaluates to true if the object param[0] is an Integer,

Double, Float, etc and false otherwise.

3

Verify that you get the same numbers when you get the RandomVariate instance from Ran-
domFactory with a third parameter in getRandomVariate() equal to Random-
Stream.STREAM[0].

Write the Code to Create Histograms

To see the results of your class visually, use the following code:4

Dimension screen = Toolkit.getDefaultToolkit().getScreenSize();
Rectangle window = new Rectangle(400, 300);

CloseableDataWindow cdw = new CloseableDataWindow("Triangular Variate Using Com-
position");
cdw.setBounds((screen.width - window.width) / 2, (screen.height - window.height) / 2,

window.width, window.height);
GraphStat gs = new GraphStat("Triangular", 0.0);
cdw.add(gs.initHistogram(true, 1.0, 2.5, 100));
cdw.setVisible(true);

In the above code fragment, the first two lines establish the dimensions of the screen and of the
data window. The CloseableDataWindow class is the shell for displaying the histogram and the set-
Bounds() command places the window at the center of the screen. The GraphStat instance produces the
histogram, itself with the initHistogram() method. The two arguments to GraphStat’s constructor
are not used in this lab, but are necessary to instantiate a GraphStat (the String and double can be
arbitrary, in fact).

The arguments to GraphStat’s initHistogram() method are as follows:

• boolean - true if histogram is animated, false if not
• double - lower limit of histogram
• double - upper limit of histogram
• int - number of cells in histogram

Finally, to generate the output, write the following loop:
for (int i = 0; i < numberToGenerate; i++) {

gs.sample(0.0, triangle.generate());
cdw.repaint();

}

The sample() method of GraphStat requires a double as its first argument for reasons that do not
apply to today’s lab. The second argument is the new observation; GraphStat will put it in the appropri-
ate bin and update the count. The repaint() method will redraw the histogram after the new observa-
tion.

Acceptance/Rejection Method

Now write a class called TriangularARVariate that generates triang(a,b,c) random variates
using the acceptance/rejection method. You can subclass TriangularVariate and just override the
generate() method.5 Since you declared your instance variables in TriangularVariate to be pro-
tected, you can use them in this class.

4. You will have to import java.awt.*; and simkit.data.*; You will also have to download the Closeable-
DataWindow class from the course web site.

5. You will have to write the constructors as well; they should have the same signatures as TriangularVari-
ate and just pass their arguments to super().

4

Output

Histograms that should (hopefully) look roughly like the triangular pdf.

Deliverables

Turn in your source code and a picture of your histograms. To print a picture, select the window
with the histogram and press <ALT>-Print Screen. Then open up Wordpad (or Word, if you must) and
paste the picture into the document. Finally, print the document.

